Spek, A. L. (1988). J. Appl. Cryst. 20, 264-269.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spek, A. L. (1993). HELENA. Program for Data Reduction. University of Utrecht, The Netherlands.

Spek, A. L. (1994). Am. Crystallogr. Assoc. Abstr. 22, 66.

Acta Cryst. (1996). C52, 177-180

Extremely Long C—C Bonds in Strained 1,1,2,2-Tetraphenylcyclobutaarenes: 3,8-Dichloro-1,1,2,2-tetraphenylcyclobuta-[b]naphthalene, C₃₆H₂₄Cl₂, and 3,6,9,10-Tetrachloro-4,5-dimethyl-1,1,2,2,7,7,8,8-octaphenyldicyclobuta[b,h]phenanthrene Toluene Solvate, C₆₈H₄₆Cl₄.1.5C₇H₈

Fumio Toda,^a Koichi Tanaka,^a Zafra Stein^b and Israel Goldberg^b

^aDepartment of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790, Japan, and ^bSchool of Chemistry, Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel

(Received 28 April 1995; accepted 10 August 1995)

Abstract

Cyclobutaarenes are highly strained compounds which exhibit unusual geometric features. Introduction of diphenyl substituents on the peripheral C atoms of the cyclobutene ring adds stereoelectronic effects and causes further distortion of the ring structure. The interatomic distances observed for the peripheral C—C bonds in the cyclobutene moiety of the two compounds are in the range 1.71-1.72 Å, among the longest of C_{sp^3} — C_{sp^3} bonds previously reported for similar compounds. The core structure of the phenanthrodicyclobutene derivative is severely twisted due to non-bonding interactions between the chlorine substituents.

Comment

A series of low-temperature crystallographic studies of arenes containing fused strained cyclobutene and cyclopropene rings, characterizing the effect of the angular strain on the electronic structure of benzene, have recently been published (Boese & Bläser, 1988; Bläser *et al.*, 1989; Boese *et al.*, 1994). For the benzocyclobutene species, the interatomic dimensions of the four-membered rings were typically found to be near C_{sp^2} — $C_{sp^2} = 1.34$, C_{sp^2} — $C_{sp^3} = 1.52$ and C_{sp^3} — $C_{sp^3} = 1.58$ Å. More recently, a new synthetic route to benzocyclobutene derivatives has been reported, leading to the preparation of a series of highly strained aromatic compounds which consist of substituted benzocyclobutene, naphthocyclobutene and anthracyclobutene fragments (Toda, Tanaka, Sano & Isozaki, 1994). The title compounds were subjected to a detailed structural analysis (at room temperature) in order to establish the molecular structure of the new materials and to characterize the effect of the severe intramolecular overcrowding on the covalent parameters of the cyclobutene ring.

The cyclobutene structure observed in this study is characterized by C_{sp^3} — C_{sp^3} bond distances in the range 1.710 (5)–1.724 (5) Å and C_{sp^3} — C_{sp^2} bond distances varying from 1.526 (4) to 1.538 (4) Å. These values have not been corrected for thermal motion effects and do not account for the presence of 'bent bonds' in the four-membered ring (Boese et al., 1994). In the planar naphthocyclobutene compound, the cyclobutene fusion bond has a normal length of 1.409(4) Å, while the adjacent bonds in the benzene ring are considerably shortened [1.351 (5) and 1.360 (4) Å]. On the other hand, in the twisted phenanthrodicyclobutene derivative, the fusion-annelated bonds and the adjacent aryl bonds have lengths which are closer in magnitude, within 1.365 (6)-1.368 (5) and 1.369 (5)-1.374 (5) Å, respectively. The intramolecular twist in the latter is best characterized by the C(Cl)-C-C-C(Cl) torsion angle along the concave surface of the molecule of $37.6(5)^{\circ}$, which represents a severe distortion of the aryl core from planarity. Moreover, while on each side of the molecule the fused cyclobutene and benzene rings are almost coplanar, the dihedral angle formed between the mean planes of the two eight-membered ring pairs is 34.6 (1)°. This allows accommodation of the two inner Cl substituents at a non-bonding distance of 3.099 (2) Å. The stretched C-C outer bonds of the cyclobutene moiety facilitate cleavage of the strained ring at this site by photoirradiation.

The significant stretching of the C_{sp^3} — C_{sp^3} bonds in the cyclobutene fragment is most probably effected by a combination of steric and electronic effects. Some elongation should, undoubtedly, be attributed to steric hindrance between the diphenyl substituents on the peripheral bond. This has been demonstrated by crystal structure analyses of two 1,1,2,2-tetraphenylethane-1,2diol derivatives, in which the central C_{sp^3} — C_{sp^3} bond distances are 1.59 Å, as compared with the standard

Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.

Fig. 2. Molecular structure of (II) showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.

C-C bond length of 1.54 Å (Toda, Tanaka, Wang & Lee, 1986; Bourne, Nassimbeni & Toda, 1991). Angular strain in the cyclobutaarene fragment also contributes at least 0.04 Å to the elongation of the saturated C-C bond (see above; Boese et al., 1994). The unique stereochemistry of these species thus accounts for a C-C stretching of ca 0.1 Å. Electronic effects (e.g. hyperconjugation and through-bond coupling) could be responsible for the additional lengthening, as reported for the bis(anthracene-9, 10-dimethylene) photodimer (Zhou, Liu & Allinger, 1993). Within this context, the authors are extremely grateful to one of the referees of this paper for confirming the unusual length of the C-C bond in question by semi-empirical methods. His MNDO and PM3 calculations on the title compounds indicated consistently that the cyclobutene C_{sp^3} — C_{sp^3} bond lengths cluster within the range 1.670– 1.684 Å, higher than the computational results obtained for the bis(anthracene-9, 10-dimethylene) photodimer (Battersby, Gantzel, Baldridge & Siegel, 1995; Zhou et al., 1993). Incidentally, the first structure determination of the latter compound reported a C-C distance of 1.77 Å within the bridging four-membered ring fragment (Ehrenberg, 1966). However, more recent experimental, as well as theoretical, evaluations indicated the correct value of this bond length to be near 1.64-1.66 Å (Battersby *et al.*, 1995; Harada, Ogawa & Tomoda, 1995; Zhou *et al.*, 1993). Consequently, it appears that the tetraphenylcyclobutaarene species contains the longest C—C bond (near 1.7 Å) reliably determined thus far for ground-state structures of organic compounds. Further studies are still required, however, to fully account for the experimental observations.

Fig. 3. Crystal structure of the toluene solvate (II) viewed down the *b* axis (four unit cells are shown). The toluene molecules are accommodated in channels formed between the phenanthrodicyclobutene species, which extend along the $[0,y,\frac{1}{2}]$ and $[\frac{1}{2},y,0]$ axes; those located near, and disordered about, the inversion centres at $\frac{1}{2},0,0$ are shown only in one orientation. The Cl substituents are indicated by crossed circles.

Experimental

The title compounds were crystallized from toluene. 3,8-Dichloro-1,1,2,2-tetraphenylcyclobuta[b]naphthalene, (I), crystallized as a pure material, while 3,6,9,10-tetrachloro-4,5-dimethyl-1,1,2,2,7,7,8,8-octaphenyldicyclobuta[b,h]phenanthrene, (II), formed co-crystals with 1.5 equivalents of toluene.

Compound (I)

Crystal data	
$C_{36}H_{24}Cl_2$ $M_r = 527.45$ Monoclinic $P2_1/n$ $a = 8.988 (6) Å$ $b = 16.861 (4) Å$ $c = 17.737 (2) Å$ $\beta = 96.48 (3)^{\circ}$ $V = 2670.8 (19) Å^{3}$ $Z = 4$ $D_x = 1.312 \text{ Mg m}^{-3}$	Mo $K\alpha$ radiation $\lambda = 0.7107$ Å Cell parameters from 25 reflections $\theta = 7.6-10.3^{\circ}$ $\mu = 0.267$ mm ⁻¹ T = 298 (2) K Prism $0.40 \times 0.25 \times 0.20$ mm Yellow
Data collection Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none	$R_{int} = 0.0209$ $\theta_{max} = 24.97^{\circ}$ $h = -10 \rightarrow 10$ $k = 0 \rightarrow 20$ $l = 0 \rightarrow 21$

4463 measured reflections 4192 independent reflections 3122 observed reflections $[I > 2\sigma(I)]$			3 standard reflections frequency: 60 min intensity decay: none			C5—C6 C6—C7 C4—C3—4 C13—C4—	C14 -C3	1.439 (4) 1.406 (4) 84.2 (2) 95.2 (2)	C12—C C13—C C4—C C13—C	C13 C14 13—C14 C14—C3	1.360 (4) 1.526 (4) 96.4 (2) 84.1 (2)	
Refineme	ent					Compou	nd (II)					
Refineme	ent on F^2		$(\Delta/\sigma)_{max} =$	-0.00°	7	Crystal d	lata					
Refinement on F^2 $(\Delta/\sigma)_{max} = -0.4$ $R[F^2 > 2\sigma(F^2)] = 0.0480$ $\Delta\rho_{max} = 0.214$ $wR(F^2) = 0.1560$ $\Delta\rho_{min} = -0.243$ $S = 0.924$ Extinction correct4192 reflectionsAtomic scattering343 parametersfor CrystallogH-atom parameters not refined $for Crystallog$ $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ 6.1.1.4)			214 e Å 0.243 e correction tering f <i>rnation</i> allogra _j ables 4	$\begin{array}{rcl} & & & C_{68}H_{46}Cl_{4}.1.5C_{7}H_{8} \\ & & \dot{A}^{-3} & M_{r} = 1143.13 \\ \text{n: none} & & Triclinic \\ actors & P\bar{1} \\ al Tables & a = 11.415 \ (4) \ \mathring{A} \\ hy \ (1992, b = 14.316 \ (2) \ \mathring{A} \\ c = 18.785 \ (4) \ \mathring{A} \\ \alpha = 85.29 \ (2)^{\circ} \\ \beta = 79.11 \ (3)^{\circ} \\ \gamma = 82.63 \ (3)^{\circ} \\ V = 2984.3 \ (13) \ \mathring{A}^{3} \end{array}$				Mo $K\alpha$ radiation $\lambda = 0.7107$ Å Cell parameters from 25 reflections $\theta = 8.3-11.2^{\circ}$ $\mu = 0.242 \text{ mm}^{-1}$ T = 298 (2) K Prism $0.40 \times 0.30 \times 0.30 \text{ mm}$ Pale yellow				
Table 1. isc	. Fractional otropic displa	atomic acement	coordinates parameters	and e (Ų) fo	equivalent r (I)	$Z = 2$ $D_x = 1.2$	72 Mg m	3				
	U _{eq} =	$(1/3)\Sigma_i\Sigma_i$	$\Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$			Data col	lection		0	22.050		
	x	у	z		U_{eq}	Enraf-N	onius CAD	-4	$\theta_{max} =$	$= 22.97^{\circ}$		
CII	0.12610 (10)	0.52109	(5) 0.3738 (5) 0.3230	3 (5)	0.0619 (3)	w/2A sca	ns		k = -	$-12 \rightarrow 12$ $-15 \rightarrow 15$		
C12 C3	0.73664 (10)	0.34948	(5) 0.3339 2) 0.2117	7 (3) 7 (14)	0.0357 (6)	Absorption correction:			$l = 0 \rightarrow 20$			
C4	0.3485 (3)	0.4699 (2) 0.2954	(2)	0.0396 (7)	none			3 star	dard reflection	ons	
C5	0.2918 (3)	0.4712 (2) 0.3627 0.4262	(2)	0.0433 (7)	7631 measured reflections				frequency: 120 min		
C6 C7	0.3096 (4)	0.4293 (2) 0.4202	(2)	0.0605 (9)	7630 independent reflections intensity decay: none					none	
C8	0.3809 (5)	0.3780 (2) 0.5540	(2)	0.0715 (11)	6281 observed reflections						
C9	0.5153 (5)	0.3401 (2) 0.5457	(2)	0.0712 (11)	$[I > 2\sigma(I)]$						
C10	0.5781 (4)	0.3464 (2) 0.4/92 2) 0.4170	(2)	0.0608 (9)	-						
C12	0.5678 (3)	0.3955 (2) 0.3465	(2)	0.0459 (7)	Refineme	ent					
C13	0.4888 (3)	0.4351 (2) 0.2883	(2)	0.0405 (7)	Refinem	ent on F^2		$(\Delta / \sigma$	$()_{max} = 0.668$		
C14	0.4915 (3)	0.4543 (2) 0.2043	9 (15)	0.0365 (6)	$R[F^2 >$	$2\sigma(F^2) = 0$	0610	$\Delta \rho_{ma}$	= 0.687 e	å ⁻³	
C15	0.3114(3) 0.4038(4)	0.5852 (2) 0.2004 2) 0.2488	6 (14) (2)	0.0360 (6)	$wR(F^2)$	= 0 1953		$\Delta \rho_{\rm min}$	h = -0.417 e	$Å^{-3}$	
C10 C17	0.4100 (4)	0.0343 (2) 0.2466	(2)	0.0591 (9)	S = 1.31	7		Extin	ction correcti	on: none	
C18	0.3227 (4)	0.7488 (2) 0.1766	(2)	0.0604 (9)	3 - 1.517 7630 reflections			Atomic scattering factors			
C19	0.2268 (4)	0.7024 (2) 0.1306	(2)	0.0574 (9)	711 nara	meters		fro	m Internation	nal Tables	
C20	0.2203 (3)	0.6216 (2) 0.1423	(2) 5 (15)	0.04/4(/)	H-atom parameters not			for Crystallography (1992			
C21 C22	0.1919(3) 0.1940(3)	0.4443 (2) 0.0865	(2)	0.0465 (7)	refined			Vol C Tables 4268 and			
C23	0.0769 (4)	0.4086 (2) 0.0425	(2)	0.0552 (8)	w = 1/[c]	$\frac{1}{r^2}(E_a^2) + (0)$	$(1P)^2$	61	14)		
C24	-0.0443 (3)	0.3796 (2) 0.0747	(2)	0.0563 (9)	where	$P = (F_{0}^{2})$	$+ 2F_c^2)/3$	0.1			
C25 C26	-0.0487(3)	0.3874 (2) 0.1509 2) 0.1958	(2)	0.0310(8) 0.0419(7)			• / ·				
C27	0.6057 (3)	0.5154 (2) 0.1870	(2)	0.0383 (6)	Table 3	Fraction	al atomic	coord	inates and	eauivalent	
C28	0.7280 (3)	0.5346 (2) 0.2385	(2)	0.0503 (8)	inter a	tronia dia	nlacement	naram	ators (Λ^2) for	or (II)	
C29	0.8263 (4)	0.5942 (2) 0.2230 2) 0.1563)(2)	0.0614 (9)	150	nropic ais	Jacemeni	purum	elers (A) ju	// (II)	
C30 C31	0.6855 (4)	0.6173 (2) 0.1044	(2)	0.0561 (8)		U_{ϵ}	$x_{q} = (1/3)\Sigma_{i}$	$\sum_{i} U_{ij} a_i^*$	$a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$.		
C32	0.5869 (3)	0.5582 (2) 0.1191	(2)	0.0462 (7)					, .	11	
C33	0.4908 (3)	0.3783 (2) 0.1573	3 (2) 2 (2)	0.0386 (7)	CII	0 42822 (11	-0.32897	7 (7)	0.15863 (7)	0.0584 (3)	
C34 C35	0.5640 (3)	0.3716 (2) 0.0928 2) 0.0521	(2)	0.0489(8) 0.0621(9)	Cl2	0.46839 (9)	0.06188	3 (7)	0.26638 (6)	0.0485 (3)	
C36	0.4849 (4)	0.2358 (2) 0.0751	(2)	0.0659 (10)	Cl3	0.14569 (10	0.14666	5 (8)	0.00850 (5)	0.0519 (3)	
C37	0.4124 (4)	0.2416 (2) 0.1386	6 (2)	0.0608 (9)	Cl4	0.19810(10	J) 0.07812 0.2660	(3)	0.33528(5)	0.0490 (3)	
C38	0.4155 (3)	0.3114 (2) 0.1794	(2)	0.0491 (7)	C6	0.4900 (3)	-0.2109	(3)	0.2439 (2)	0.0354 (9)	
						C7	0.4125 (3)	-0.2215	(3)	0.1983 (2)	0.0377 (9)	
٥						C8	0.3304 (3)	-0.1420	(3)	0.1815 (2)	0.0349 (9)	
Table 2. Selected geometric parameters (Å, °) for (I)						C9 C10	0.2493 (3)	-0.1431	(3)	0.0954 (2)	0.0363 (9)	
C11C5	1	.740 (3)	C6C11		1.432 (5)	CII	0.2158 (3)	0.0298	(3)	0.1248 (2)	0.0336 (9)	
Cl2—C12	1	.740 (3)	C7C8		1.371 (5)	C12	0.1646 (3)	0.1195	(3)	0.0976 (2)	0.0351 (9)	
C3C4	1	.538 (4)	C8—C9		1.389 (6)	C13	0.1328 (3)	0.1909	(2)	0.1445 (2)	0.0346 (9)	
C3-C14	1	./20 (4)	C9-C10		1.369 (5)	C14 C15	0.0740(3)	0.2931	(3)	0.1471(2) 0.2358(2)	0.0350 (9)	
C4-C13	1	.409 (4)	CI1—C12		1.422 (4)	C16	0.1504 (3)	0.1809	(3)	0.2148 (2)	0.0341 (9)	

C17	0.2056 (3)	0.0982 (3)	0.2420 (2)	0.0349 (9)	Table 4. Selected	d geometri	ic parameters (Å, °)	for (II)
C18	0.2516 (3)	0.0259 (2)	0.1936 (2)	0.0326 (8)	<u> </u>		, , , , , , , , , , , , , , , , , , ,	<i>j</i> (11)
C19	0.3340 (3)	-0.0548 (2)	0.2120 (2)	0.0329 (9)	CII_C7	1.738 (4)	C10—C24	1.513 (6)
C20	0.4252 (3)	-0.0461 (3)	0.2521 (2)	0.0351 (9)	$C_{12} = C_{20}$	1.737 (4)	C11-C18	1.422 (5)
C21	0.4938 (3)	-0.1263 (3)	0.2715 (2)	0.0347 (9)	CI3-C12	1.735 (4)	C11-C12	1.437 (5)
C22	0.5921 (3)	-0.1598 (3)	0.3157 (2)	0.0377 (9)		1./41 (4)	C12-C13	1.371 (5)
C23	0.1998 (5)	-0.2332 (3)	0.1192 (3)	0.0638 (14)	05-06	1.533 (5)	C13-C16	1.368 (5)
C24	0.1463 (5)	-0.0640 (3)	0.0328 (3)	0.0600 (13)	C3-C22	1.710 (5)	C13—C14	1.531 (5)
C25	0.5372 (4)	-0.3436 (3)	0.3345 (2)	0.0411 (10)	C6-C21	1.365 (5)	C14—C15	1.724 (5)
C26	0.5985 (4)	-0.4325 (3)	0.3444 (3)	0.0538 (12)	C6_C/	1.372 (5)	C15-C16	1.529 (5)
C27	0.5449 (5)	-0.5016 (3)	0.3901 (3)	0.0678 (14)	0/08	1.433 (5)	C16—C17	1.374 (5)
C28	0.4317 (6)	-0.4844 (4)	0.4282 (3)	0.071 (2)	C8-C19	1.424 (5)	C17—C18	1.417 (5)
C29	0.3692 (5)	-0.3968 (4)	0.4201 (3)	0.0650 (14)	C8-C9	1.460 (5)	C18—C19	1.455 (5)
C30	0.4195 (4)	-0.3272 (3)	0.3731 (2)	0.0514 (11)	C9-C10	1.368 (5)	C19—C20	1.419 (5)
C31	0.7080 (4)	-0.2985 (3)	0.2348 (2)	0.0410(10)	C9—C23	1.517 (6)	C20-C21	1.369 (5)
C32	0.8100 (4)	-0.3176 (3)	0.2655 (2)	0.0517 (11)	C10—C11	1.452 (5)	C21—C22	1.526 (5)
C33	0.9199 (4)	-0.3443 (3)	0.2248 (3)	0.0617 (13)	C6-C5-C22	83.6 (3)	C16-C15-C14	83 2 (3)
C34	0.9321 (4)	-0.3536 (3)	0.1524 (3)	0.0664 (14)	C21-C6-C5	96.1 (3)	C13-C16-C15	969(3)
C35	0.8326 (5)	-0.3358 (3)	0.1203 (3)	0.0638 (14)	C16-C13-C14	96.4 (3)	C6-C21-C22	96.8 (3)
C36	0.7211 (4)	-0.3078 (3)	0.1609 (2)	0.0494 (11)	C13-C14-C15	83.5 (3)	$C^{21} - C^{22} - C^{5}$	835(3)
C37	0.7064 (3)	-0.1137 (3)	0.2879 (2)	0.0401 (10)		0010 (0)		05.5 (5)
C38	0.7391 (4)	-0.0896 (3)	0.2143 (2)	0.0494 (11)	C8-C9-C10-C11	20.7(6)	C17—C18—C19—C20	37.6 (6)
C39	0.8425 (5)	-0.0499 (4)	0.1863 (3)	0.0657 (13)	C23—C9—C10—C24	15.5 (6)		
C40	0.9175 (5)	-0.0313 (4)	0.2318 (3)	0.0723 (15)				
C41	0.8862 (5)	-0.0520 (4)	0.3046 (3)	0.0723 (15)	For both compo	ounds, data	a collection: CAD-4	Software
C42	0.7815 (4)	-0.0927(3)	0.3327 (2)	0.0536(11)	(Enraf-Nonius 198	(9) cell ref	inement. CAD-A Soft	ware data
C43	0.5517 (4)	-0.1592(3)	0.3976 (2)	0.0412 (10)	reduction: CADINI	(1 - 1)		wure, uala
C44	0.6117 (4)	-0.2187(3)	0.4439 (2)	0.0555 (12)	reduction: CADINI	(locally d	eveloped software); p	program(s)
C45	0.5788 (5)	-0.2166 (4)	0.5183 (3)	0.0700 (15)	used to solve struc	tures: SHE	LXS86 (Sheldrick, 1 ^e	985); pro-
C46	0.4845 (5)	-0.1532 (4)	0.5474 (3)	0.072 (2)	gram(s) used to a	refine strue	ctures: SHELXL93 (Sheldrick.
C47	0.4228 (5)	-0.0944 (4)	0.5029 (3)	0.0674 (14)	1993) molecular	ranhies 0	RTEPH (Johnson 19	()76): soft-
C48	0.4559 (4)	-0.0974(3)	0.4280 (2)	0.0516(11)	wore used to prepar	nupines. O	for publication, 12	<i>V</i> (0), 3011-
C49	-0.0594(3)	0.3085 (3)	0.1441 (2)	0.0403 (10)	wate used to prepar	e material	for publication: SHEL	LAL93 and
C 50	-0.1163 (4)	0.2415 (3)	0.1196 (3)	0.0587 (12)	PARST (Nardelli, 1	983).		
C51	-0.2391(5)	0.2537 (4)	0.1220 (3)	0.079 (2)				
C52	-0.3077(4)	0.3358 (4)	0.1479 (3)	0.073(2)				
C 53	-0.2522(4)	0.4024 (4)	0.1723 (3)	0.0593 (13)	Lists of structure fac	ctors, anisoti	opic displacement para	meters, H-
C54	-0.1298(4)	0.3885 (3)	0.1710(2)	0.0471 (11)	atom coordinates and	complete g	eometry have been dep	osited with
C 55	0.1511 (3)	0.3601 (3)	0.0976 (2)	0.0389 (9)	the IUCr (Reference:	JZ1061). Co	nies may be obtained th	hrough The
C 56	0.1057 (4)	0.4440 (3)	0.0649 (2)	0.0480(11)	Managing Editor Int	ernational II	nion of Crystallography	5 Abbey
C57	0.1808 (5)	0.5027 (3)	0.0221 (3)	0.0584 (12)	Square Chester CHI	2HII Engle	nd	, J AUDCY
C 58	0.3015 (5)	0.4805 (4)	0.0104 (3)	0.0691(14)	Square, cliester CHT	ZHU, Engla	lid.	
C 59	0.3499 (4)	0.3980 (4)	0.0428 (3)	0.0689(14)				
C60	0.2761 (4)	0.3388 (3)	0.0851(2)	0.0527(11)				
C61	-0.0155(3)	0.2814 (3)	0.2936 (2)	0.0389 (9)	Deferences			
C62	-0.0872(4)	0.2091 (3)	0.3009 (3)	0.0558 (12)	References			
C63	-0.1912(5)	0.2083(4)	0.3525 (3)	0.0693 (15)	Battersby, T. R., Gant	zel, P., Bald	ridge, K. K. & Siegel, J	. S. (1995).
C64	-0.2254(5)	0.2798 (4)	0.3986 (3)	0.0055(2)	Tetrahedron Lett. 3	6, 845-848.	c	. ,
C 65	-0.1562(5)	0.3529 (4)	0.3919(3)	0.075(2)	Bläser, D., Boese, R.	Brett W	A Rademacher P Sc	hwager H
C 66	-0.0520(4)	0.3536 (3)	0.3409(3)	0.075(2)	Stanger M & Voll	hardt K P	C (1080) Anorry Cho	inwager, II,
C 67	0.1863(3)	0.3428(3)	0.2492(2)	0.0385 (9)	Empl 19 204 209	inalut, K. F.	C. (1969). Angew. Che	m. m. Ea.
C68	0.1638 (4)	0.3428(3) 0.4408(3)	0.2492(2) 0.2388(2)	0.0363 (3)	Engl. 20, 200-208.	(1000)		
C 69	0.2464(5)	0.4983(3)	0.2380(2)	0.0588 (12)	Boese, R. & Blaser, L). (1988). An	gew. Chem. Int. Ed. Eng	<i>[.</i> 27 , 304–
C 70	0.2527(5)	0.4605 (4)	0.2400 (3)	0.0550 (12)	305.			
C71	0.3327(3)	0.4005 (4)	0.2000(3)	0.0032(14)	Boese, R., Bläser, D.,	Billups, W.	E., Haley, M. M., Mau	litz, A. H.,
C72	0.2932 (4)	0.3062 (3)	0.2001(3)	0.0001 (10)	Mohler, D. L. & Vo	ollhardt, K. F	. C. (1994). Angew. Che	m. Int. F.d.
C 73+	0.2332(4) 0.4490(7)	0.3662 (3)	0.2703 (2)	0.0491(11)	Enel. 33, 313-317			
C74+	0.4431(6)	-0.0533(5)	0.9400(J)	0.120(11)	Bourne S A Nassir	nheni I P	& Toda E (1001) /	Cham Soa
C 75+	0.4451(0) 0.4884(5)	-0.0322(0) -0.1341(4)	0.9234 (3)	0.070(3)	Parkin Trans 2 pp	1225 1241	de 100a, 1º. (1991). J. (chem. soc.
C 76t	0.5396 (5)	-0.1341(4) -0.1286(4)	1 0106 (4)	0.103(2)	Ebrophere M (1066)	1555-1541.	30 102 107	
C 77+	0 5455 (7)	-0.0412 (6)	1.0150 (4)	0.103(3)	Enrenberg, M. (1966).	Acia Cryst.	20, 182-186.	
C 78+	0.5-05(7)	0.0408 (4)	1.0400 (4)	0.002(0)	Enrat-Nonius (1989).	CAD-4 Sof	tware. Version 5.0. En	at–Nonius,
C 70+	0.3002 (0)	0.0400 (4)	0.4007 (3)	0.070(3)	Delft, The Netherla	nds.		
C 80+	0.0742(17)	0.3930(10)	0.4797/(10)	0.330(11)	Harada, J., Ogawa, K.	& Tomoda.	S. (1995). Chem. Lett. pr	o. 751–752.
C 81+	0.2000(7)	0.0703 (0)	0.4700 (3)	0.337 (10)	Johnson, C. K. (1970	5). ORTEPII	. Report ORNL-5138	Oak-Ridge
C 82+	1 0072 (0)	0.7337(7)	0.3043 (4)	0.103 (4)	National Laboratory	. Tennessee	USA	
C 82+	1.00/2 (9)	0.0213(3)	0.4/38(3)	0.24/(/)	Nardelli M (1023)	Comput Cha	m 7 05_08	
C 841	1.0009 (8)	0.8033(0)	0.4090(6)	0.277(8)	Shaldwale C M (1965). C	ompul. Chel	11. 1, 7J-70.	.
C 04T	1.0913(/)	$U_{1/2}[8(7)]$	0.5751 (4)	0.225(6)	SHEIDTICK, G. M. (19	ふうし ふけたしぶ	NAD Program for the	volution of
C 951	10164 (9)	0 65 45 (5)	0.4050 (5)	0.1(1.(1)				solution of
C 85†	1.0164 (8)	0.6545 (5)	0.4059 (5)	0.161 (4)	Crystal Structures.	University o	f Göttingen, Germany.	solution of

† Atoms C73-C78 represent the toluene molecule located near, and disordered about, the inversion centre at $\frac{1}{2}$,0,1. In the disordered model, atoms C73, C74, C76, C77 and C78 were assigned an occupancy factor of 0.5, and atom C75 an occupancy factor of 1. Atoms C79-C85 represent another toluene moiety located at a general position and partly disordered. Due to the apparent disorder of the toluene molecules, they were included in the refinement with constrained geometries.

Toda, F., Tanaka, K., Sano, I. & Isozaki, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 1757-1758. Toda, F., Tanaka, K., Wang, Y. & Lee, G.-H. (1986). Chem. Lett. pp.

Crystal Structures. University of Göttingen, Germany.

- 109-112.
- Zhou, Z., Liu, R. & Allinger, N. L. (1993). J. Am. Chem. Soc. 115, 7525-7526.